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ABSTRACT

This paper contains a summary of the experience of the authors in the field of electromechanical modeling

for rotating machinery - active vibration control. Piezoelectric and magnetic bearing actuator based control
are discussed.

INTRODUCTION

The stability analysis of conventionally supported rotating machinery has been treated extensively for many

years. More recently attention has been focused on the stability analysis of magnetically supported flexible

rotor or rotor-bearing installations with active vibration control systems. Assembling the model for this

analysis has four basic steps:
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(a)

(b)

(c)

(d)

Form the passive mass, stiffness, damping model from the shaft and disc geometry and

from the flow, fluid and geometric properties of bearings and seals;

Obtain transfer fimction representation of all frequency dependent components in the

feedback loop of the control system. This typically includes sensors, power amplifiers,

digital signal processors and actuators;

Assembly (coupling) of the frequency dependent component representations in (b) with tile passive rotor-

bearing-seal system model in (a);

Solution of the characteristic equation of the closed loop system for the eigenvalues and

inspection of the eigenvatues to investigate stability.

111a previous paper [1], the authors demonstrated how step (b) could be accomplished by curve fitting the

component's frequency response to that of a 2nd order low pass electrical filter. This approach provided a

2nd order linear differential equation representation of the component which could be very easily coupled to

the rotor system model to accomplish task (c). Task (d) was then performed utilizing the QR algorithm to

extract the eigenvalues from the finite element formulated closed loop model.

Maslen and Bielk [2] presented an approach for coupling a frequency dependent, feedback loop

component with a generically defined transfer function, to a standard finite element rotor system model. This

method avoids the problems encountered in transfer matrix based approaches to solving the closed loop

stability problem, namely non-collocated sensor-actuators and frequency dependent feedback components.

Ramesh and Kirk [3] presented a comparison between their F.E. approach to electromechanical system

(ES) modeling and a transfer matrix based approach. Their results show good agreement between tile

methods; however, no analytical treatment of their F.E. approach was provided. Ku and Chen [4] present a

F.E. based method for stability analysis of ES models and demonstrate it on our industrial pump model. The

approach appears very accurate but it may be somewhat inefficient in that the eigenvalue problem must be

sol ved repeatedly while making guesses at the natural frequencies.

'lhis manuscript provides a review of the author's experience in electromechanical system modeling for

this application. Theory and test results are given, along with a chronologically based description of tile

evaluation of tile current modeling's methodology.

DISCUSSION

The test and theoretical results for piezoelectric actuator active vibration control are given in reference [5].

Thc test rig employed in that study is shown in Figure 1. The theoretical results in that paper assume ideal

actuators, amplifiers and controllers which do not exhibit phase lag or amplitude roll off. Typical predicted

unbalance response curves for various derivative feedback gains are shown in Figure 2. The governing

equation for this system only represents pure proportional feedback gain (constant gain, zero phase lag) and

pure derivative feedback gain (linear dependence of gain on frequency, 90 ° phase lead).

This simulation approach was improved in reference [1] where the actuator and amplifier's frequency

response functions were represented by 2nd order low pass filters. Figures 3 and 4 show the measured and

curve fit frequency response functions of a piezoelectric actuator. The curved fit representation represents 2nd
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order differential equations which are assembled with the mechanical model to form a closed loop electrome-

chanical model. Figures 5 and 6 show the shape of the measured and predicted unstable mode shapes for the

same test rig as shown in Figure 1. Note that the frequency of that instability is approximately 2100-2400 11z.

The closed loop model was employed to investigate the effects ofa 4th order low pass filter on stability of

the unstable mode yielding the plots of Real (eigenvalue) versus feedback gain and cutoff frequency in Figure

7.

The authors [6] improved on this approach by employing a general order transfer function-state variable

representation of any component in the feedback path. The approach is similar to [2]; however, a systematic

method is provided for obtaining the transfer function from test data. A theory-test correlation is presented in

this paper employing the test rig shown in Figures 8 and 9. This test rig was previously described in reference

[71. Figure 10 shows the measured and curve-fit 8th order transfer function through the summed proportional

and derivative feedback paths of the digital controller. State space representations of this controller and the

power ampli tier were assembled along with a finite element model of the rotor (Figure 9) to predict the

stability bounds of the coupled electromechanical system. Figure 11 shows a comparison between the pre-

dicted and measured stability boundaries in the proportional-derivative feedback gain space. Simulation

results are shown for various values of a parameter that characterizes the back emf induced by vibrations of

the shaft, as explained in reference [6].

Actuators and sensors are always mounted on a support structure with some flexibility and inertia of its

own. Reference [7] describes a simulation study for closed loop stability including effects of actuator and

sensor mount flexibility. The rotor model was the same one as employed in references [1 ] and [5], and is

depicted in Figure 12. The casing was simulated with 9 node, isoparametric thick shell elements and the

actuators and sensors were attached to the flexible casing. Figures 13 and 14 are typical of results shown in

reference [7]. Note how one of the three unstable modes shown in Figure 13 for the case of sensor mounted

to casing does not appear ifthe sensor mount is assumed to be rigid as shown in Figure 14.

Figure !5 depicts a current research test being conducted by the authors for predicting stability bounds for

a gas turbine engine simulator. This installation employs a PID based digital controller, pulse width

modulated power amplifier and a high temperature magnetic bearing. Figure 16 shows the measured and

curve fit transfer function through the summed proportional and derivative paths of the controller. The

measured and predicted stability bounds will be determined and published in the near future.

SUMMARY

This manuscript summarizes the authors' efforts in the area of active vibration control related--

clectromechanicat system modeling. Initial efforts employed ideal feedback component characterizations that

were free ofrolloff and phase lag. The later research of the authors utilized more realistic models based on

transfer functions through the feedback components. The future work in this area will concentrate on
additional test verifications ofthe method.
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Figure I. Diagram of test rig with Piezoelectric pushers.
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Figure 2. Simulation unbalance response at probe 2X or 2Y

vs. feedback gain coefficients in ADFT.
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Figure 3. Transfer function plot of a typical pusher.
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Figure 4. Transfer function plot of realized electrical circuit of pusher A.
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Figure 5. Measured mode shape of unstable mode at a frequency of 2100 Hz.

Figure 6. Predicted mode shape of unstable mode at 2400 Hz.
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Figure 7. Effects of cutoff frequency of 4N ILPF on the system instability onset gain.
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Figure 8. Cryogenic Magnetic Bearing Test Facility Design.
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Figure 12. Fourteen mass rotor model and actuator connection.
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Figure 13. I/16" casing wall thickness eigenvalue stability graph.
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Figure 15. Block diagram of industrial magnetic bearing rotor.
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Figure 16. Comparison of TAMU simulation and Measurement (p:-10 and D:-50).
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